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Abstract

In “Antifragile” [1], Taleb provides a fresh perspective on how one may gain from disorder.
In this short note, we formalize and unify in a single premium (a schematic view of) the
concavity/convexity and conflation e↵ects described by Taleb. We show that this premium
relies on a generalization of a well-known class of distortion measures of information geometry,
namely Bregman divergences. We exemplify some properties of this premium, and discuss
them in the light of “Antifragile” [1].

1 Introduction

Everything gains or loses from volatility. Things that lose from volatility are fragile. Things
that gain from uncertainty are the opposite. In his latest opus (2012), Nassim Nicholas Taleb
call these things that gain from disorder antifragile [1]. Taleb advocates a quest for antifragility,
a quest that nature has long embarked into. Sadly enough, mankind is more often than not
exposed to fragility without knowing it. The reasons for this lethal blindness are many. Accord-
ing to Taleb, we su↵er from what he calls the conflation error and we overlook the convexity bias.

The conflation error is due to the fact that we spend too much time and resources trying to
predict (unpredictable) outcomes: In the course of doing so, we take the tree for the forest. We
are obsessed by prediction while we should focus on what our exposure to uncertain outcomes
is all about. What matters is not, say, the uncertain outcome x but how it a↵ects us. What
matters to us is our response function f(x). Confusing x for f(x) or the expectation E(x) for
f(E(x)), for that matter, is the conflation error. This error compounds with the convexity bias.
Indeed, even if we were avoiding the conflation error on focusing on f(E(x)), this would have
the unfortunate consequence that we miss whether we are in a fragile or antifragile position.
The right move is to use E(f(x)) instead of f(E(x)). If f is concave we lose from disorder, if f

is convex we gain from it.
In this note, we show that Taleb’s concepts can be summarized into a single premium which

we call Taleb’s premium. Borrowing from recent developments in information theory we show
that the conflation error and the convexity bias can be measured by Bregman divergences.
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2 The almighty mean

The notion of expected value, of average, is very familiar to us. It arises spontaneously from
the natural tendency of the human mind to unify in a more or less comprehensive synthesis
quantitative impressions it receives from objects 1.

Averages are addictive. Whatever the quantity of interest (sizes, weights, financial returns,
interest rates, rainfall levels, temperatures, growth rates, budget deficits, sales, costs...), it is
first summarized by its average. When it comes to predicting the value of a random outcome
from observations, averages come again into play.

But, as we all know: “The expected value is not to be expected”. This is a casual way of
saying that relying on the average inevitably loses information about the data it is supposed to
synthesize. In other words, averaging yields a trade-o↵ between data compression and informa-
tion loss. This trade-o↵ is well-known in econometrics where the loss in information is usually
measured by the mean squared error: Under this assumption, the conditional average is the
unique (best) predictor that minimizes the mean squared error.

One may wonder, given the sheer popularity of the (conditional) average if there are other
(more general) information loss functions for which the average is the unique best predictor
of future outcome. This would give another strong rationale for its ubiquity. Recent work
in information theory [2] shows that under so-called Bregman loss functions, aka Bregman
divergences the (conditional) average is the unique best predictor: It minimizes the expectation
of the Bregman divergence2.

Definition 1 [3] Let f be some convex di↵erentiable function. The Bregman divergence between
x and y is: Df (xky) .= f(x)� f(y)� (x� y)f 0(y), where f

0 is the derivative of f .

Bregman divergences generalize well-known distortion measures used in geometry (Mahalanobis
divergence), statistics (Kullback-Leibler divergence), signal processing (Itakura-Saito divergence),
etc. . In layman’s terms, the Bregman loss function measures the rest of the Taylor expansion:
Under a (convex) Bregman loss function, this expected rest is minimized when the average is
taken as the best predictor.

But there is more to this result. Indeed, the minimum of the expected Bregman loss function
has a nice and useful interpretation. It is equal to the Jensen’s gap.

Definition 2 For any set S = {x1, x2, ...} equipped with discrete probabilities P = {p1, p2, ...},
we let µS

.= EPS.

Jensen’s gap over f is then the di↵erence between the expected value of f and the f -value for
the average; it is a special case of Bregman divergence as we have:

EPf(x)� f(µS) = EPDf (xkµS) . (1)

Banerjee et alli call this gap the Bregman information. To get the intuition of this result,
assume that the random variable is Gaussian. In that case, the Bregman information is equal
to the variance. Indeed, compressing the Gaussian variable to its mean is tantamount to losing
the variance information, which is exactly what Jensen’s inequality boils down to. Under the
normality assumption, the loss function measured at the average of the random variable diverges
from the expected loss function by the variance factor.

1
Lottin, Joseph: “La théorie des moyennes et son emploi dans les sciences d’observation”, Revue néo-

scolastique, 16ème année, n

�
64, 1909, p 537

2
Note that this result works both ways: If the conditional average is the best predictor, the loss function is a

Bregman divergence. If the loss function is a Bregman divergence, the unique best predictor is the conditional

average.
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3 The mean can be mean

Despite all its advantages, focusing on the mean can truly be misleading. Indeed, as forcefully
reminded in Nassim Taleb’s latest book [1], we spend too much time and resources on (predicting
unpredictable) random outcomes. According to Taleb, we should rather uncover what our true
exposure to uncertain outcomes is all about. After all, what a↵ects us is not the uncertain
prospect per se but how our exposure to it transforms its impact into either a favorable or
damaging outcome. In other words, by spending too much energy on the random prospect x, we
confuse x for f(x) where f describes our exposure to x. What matters is our response function,
f(x), to x. Confusing x for f(x) is what Taleb calls the conflation error.

This error hides a more pervasive consequence. And, this is where Jensen’s come into play
again. Assume that you try to predict x and come up with the expectation E(x) = µS as its
best predictor. Assume that you are not subject to the conflation error and do measure f(µS).
There you go says Taleb: You miss the shape of f and what this shape implies to your “health”.

Let’s assume that f is concave. This is the typical exposure of an investor who for instance
has shorted a call option on a stock. The investor is said to be negative gamma. In that
case, Jensen’s inequality tells the investor that f(µS) overestimates the outcome of his trading
position. Indeed, for a concave f :

EPf(x)� f(µS) < 0 .

In other words, the investor is (negatively) exposed to volatility. Any major swings in the
underlying stock price or its volatility translate into losses. This is what Taleb calls missing the
convexity (concavity for that matter) bias. The investor is experiencing fragility.

If the same trader were long the same call option, his exposure would be convex and his
position would be antifragile: He would gain from noise, from volatility. Indeed:

EPf(x)� f(µS) > 0 .

The expected value µS underestimates what the convex exposure of the investor will translate
into. Again, this is what Taleb calls the convexity bias.

4 The Taleb (antifragility / conflation) premium

The Taleb premium integrates both the non-linearity e↵ects of f and the conflation of f for
x. Under Taleb’s setting, it is defined as: EPf(x) � µS . Let us split this premium into two
components:

EPf(x)� µS = EPf(x)� f(µS)| {z }
(a)

+ f(µS)� µS| {z }
(b)

.

(a) is Jensen’s gap, which quantifies the non-linearity e↵ects, and (b) is the conflation e↵ect. We
now formally define Taleb’s premium in a more extended setting, in which the conflation e↵ect
is more general.
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Figure 1: A schematic view of type-1 and type-2 divergences, D

1
f,g(xky) and D

2
f,g(xky).

4.1 Definition

Let f, g, h be three real-valued, di↵erentiable functions. The (f, g, h)-divergence between reals
x 2 dom(f) and y 2 dom(g) \ dom(h) is:

Df,g,h(xky) .= f(x)� g(y) � (x� y)h0(y) . (2)

When f = g = h is convex, one obtains Bregman divergences (Definition 1). We specialize (2)
in two skewed divergences that generalize Bregman divergences as well:

1. Type-1 divergences, in which h = f , noted D

1
f,g(xky);

2. Type-2 divergences, in which h = g, noted D

2
f,g(xky).

Figure 1 presents an example view of type-1 and -2 divergences when f > g.

Definition 3 For any set S = {x1, x2, ...} equipped with discrete probabilities P = {p1, p2, ...},
we let

Pf,g(S) .= EPf(x)� g(µS) (3)

denote the T-premium, where f and g are convex di↵erentiable, and f � g.

If one takes g(x) = x, we recover Taleb’s original T-premium.

4.2 Some properties

Figure 2 displays the T-premium in Taleb’s framework (g(x) = x). One sees that the T-premium
integrates two parts relevant to antifragility [1]: the first one caused by the Jensen’s gap, and the
second one due to conflation (misunderstanding of f for g), which imposes f(x) � x(= g(x)).
The following Lemma makes the observation more precise.

Lemma 1 Letting Id(x) .= x, we have:

D

1
f,g(xky) = Df (xky) + (f(y)� g(y)) , (4)

D

2
f,g(xky) = Dg(xky) + (f(x)� g(x)) , (5)

Pf,g(S) = EPD

1
f,g(xkµS) , (6)

= EPD

2
f,g(xkµS) . (7)
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Figure 2: Decomposition of Pf (S) in two e↵ects, the first caused by nonlinearity (a), and the
second due to the conflation e↵ect of f(x) for x (b).

Eqs. (6) and (6) show that the T-premium can be written as an expected type-1 or -2 divergence
with respect to the sample’s average. This is a generalization of other “premia” famed in geom-
etry, statistics, signal processing, that can be written as the average of a Bregman divergence
with respect to a sample’s average. Each of them quantifies the loss in information that one
pays by replacing a sample by its average, thus somehow reducing his/her “field of vision” over
the data.

Bregman divergence play a fundamental role in the quantification of these losses. They are re-
markable because they allow to analyze the ubiquitous and polymorphous nature of information
using a single class of measures, whatever this information be: sounds, colors, bits, probabilities,
stock values, etc. [4, 5]. Bregman divergences satisfy a number of useful properties. Type-1
and -2 divergences (and so, the T-premium) turn out to satisfy interesting generalizations of
these properties. Assume that f , g are strictly convex in Pf,g(S). The following Lemma is an
example, which relies on convex conjugates: informally, the convex conjugate f

? of f and f have
the property that their derivatives are inverse of each other.

Lemma 2 Assume f, g strictly convex di↵erentiable. The following holds true:

D

1
f,g(xky) = D

1
f?,g?(f 0(y)kf 0(x)) + y(f 0(y)� g

0(y)) , (8)

D

2
f,g(xky) = D

2
f?,g?(f 0(y)kf 0(x)) + x(f 0(x)� g

0(x)) . (9)

Hence, whenever f

0 = g

0,

D

1
f,g(xky) = D

1
f?,g?(f 0(y)kf 0(x)) , (10)

D

2
f,g(xky) = D

2
f?,g?(f 0(y)kf 0(x)) . (11)

The important thing about this result is that the distortion between x and y may be the same
as between f

0(y) and f

0(x) (remark that parameters are switched in (10) and (11): type-1 and
-2 divergences are in general not symmetric). Hence, there is a dual representation for x and
y which may provide the same information for distortions in data. However, because of the
assymetry of (10 — 11) and the di↵erences between f and f

?, confusing x for the dual repre-
sentation f

0(x) may result in large uncontrolled errors. This is another view of the conflation
error.
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This dual representation is very helpful to improve the qualitative understanding of data
in particular domains, and very helpful to improve models and decisions. Consider finance:
type-1 and -2 divergences are a generalization of Bregman divergences. In this more specialized
Bregman case for which the duality relationships (10) and (11) always hold, we can model risk
premia as a generalization of Markowitz famed approach [5]. The dual representations turn out
to be the spaces of returns, and the space of allocations [5]. In one case only, i.e. for a single
choice of f , these di↵erent representations collapse as one. Thus, in Taleb’s vocabulary [1],
there is an implicit conflation made between observations of potentially di↵erent nature. This,
obviously, may impair considerably the “perception” of data, increase the risk of errors, and
ultimately make behaviors more fragile.
— Bullseye for Taleb3: this (so) particular case coincides with Markowitz setting [5].
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