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A focus on the exceptions
that prove the rule
Traditional risk management tools focus on what is normal and consider extreme events as ancillaries. In a world
characterised by volatility and uncertainty, Benoit Mandelbrot and Nassim Taleb argue that this approach is
misguided, and propose an alternative methodology where large deviations dominate the analysis

C
onventional studies of uncer-
tainty, whether in statistics,
economics, finance or social
science, have largely stayed
close to the so-called “bell
curve”, a symmetrical graph

that represents a probability distribution.
Used to great effect to describe errors in
astronomical measurement by the 19th-cen-
tury mathematician Carl Friedrich Gauss,
the bell curve, or Gaussian model, has since
pervaded our business and scientific culture,
and terms like sigma, variance, standard
deviation, correlation, R-square and Sharpe
ratio are all directly linked to it.
If you read a mutual fund prospectus, or a

hedge fund’s exposure, the odds are that it
will supply you, among other information,
with some quantitative summary claiming to
measure “risk”. That measure will be based
on one of the above buzzwords that derive
from the bell curve and its kin.
Such measures of future uncertainty sat-

isfy our ingrained desire to “simplify” by
squeezing into one single number matters
that are too rich to be described by it. In
addition, they cater to psychological biases
and our tendency to understate uncertainty
in order to provide an illusion of understand-
ing the world.
The bell curve has been presented as “nor-

mal” for almost two centuries, despite its
flaws being obvious to any practitioner with
empirical sense. Granted, it has been tink-
ered with using such methods as comple-
mentary “jumps”, stress testing, regime
switching or the elaborate methods known
as GARCH, but while they represent a good
effort, they fail to address the bell curve’s
fundamental flaws.
The problem is that measures of uncer-

tainty using the bell curve simply disregard
the possibility of sharp jumps or discontinui-
ties and, therefore, have no meaning or conse-
quence. Using them is like focusing on the
grass and missing out on the (gigantic) trees.
In fact, while the occasional and unpredicta-
ble large deviations are rare, they cannot be
dismissed as “outliers” because, cumulatively,
their impact in the long term is so dramatic.
The traditional Gaussian way of looking at

the world begins by focusing on the ordi-
nary, and then deals with exceptions or so-
called outliers as ancillaries. But there is

also a second way, which takes the so-called
exceptional as a starting point and deals with
the ordinary in a subordinate manner – simply
because that “ordinary” is less consequential.
These two models correspond to two mutu-

ally exclusive types of randomness: mild or
Gaussian on the one hand, and wild, fractal
or “scalable power laws” on the other. Meas-
urements that exhibit mild randomness are
suitable for treatment by the bell curve or
Gaussian models, whereas those that are
susceptible to wild randomness can only be
expressed accurately using a fractal scale.
The good news, especially for practitioners,
is that the fractal model is both intuitively

and computationally simpler than the Gaus-
sian, which makes us wonder why it was not
implemented before.
Let us first turn to an illustration of mild

randomness. Assume that you round up
1,000 people at random among the general
population and bring them into a stadium.
Then, add the heaviest person you can think
of to that sample. Even assuming he weighs
300kg, more than three times the average, he
will rarely represent more than a very small
fraction of the entire population (say, 0.5 per
cent). Similarly, in the car insurance busi-
ness, no single accident will put a dent on a
company’s annual income. These two exam-
ples both follow the “Law of Large Num-
bers”, which implies that the average of a
random sample is likely to be close to the
mean of the whole population.
In a population that follows a mild type of

randomness, one single observation, such as
a very heavy person, may seem impressive
by itself but will not disproportionately
impact the aggregate or total. A randomness
that disappears under averaging is trivial
and harmless. You can diversify it away by
having a large sample.
There are specific measurements where

the bell curve approach works very well,
such as weight, height, calories consumed,
death by heart attacks or performance of a

gambler at a casino. An individual that is a
few million miles tall is not biologically pos-
sible, but an exception of equivalent scale
cannot be ruled out with a different sort of
variable, as we will see next.

Wild randomness
What is wild randomness? Simply put, it is
an environment in which a single observa-
tion or a particular number can impact the
total in a disproportionate way. The bell
curve has “thin tails” in the sense that large
events are considered possible but far too
rare to be consequential. But many funda-
mental quantities follow distributions that
have “fat tails” – namely, a higher probabil-
ity of extreme values that can have a signifi-
cant impact on the total.
One can safely disregard the odds of run-

ning into someone several miles tall, or
someone who weighs several million kilo-
grammes, but similar excessive observations
can never be ruled out in other areas of life.
Having already considered the weight of

1,000 people assembled for the previous exper-
iment, let us instead consider wealth. Add to
the crowd of 1,000 the wealthiest person to be
found on the planet – Bill Gates, the founder
of Microsoft. Assuming that his net worth is
close to $80bn, how much would he represent
of the total wealth? 99.9 per cent? Indeed, all
the others would represent no more than the
variation of his personal portfolio over the
past few seconds. For someone’s weight to
represent such a share, he would need to
weigh 30m kg.
Try it again with, say, book sales. Line up

a collection of 1,000 authors. Then, add the
most read person alive, JK Rowling, the
author of the Harry Potter series. With sales
of several hundred million books, she would
dwarf the remaining 1,000 authors who
would collectively have only a few hundred
thousand readers.
So, while weight, height and calorie con-

sumption are Gaussian, wealth is not. Nor
are income, market returns, size of hedge
funds, returns in the financial markets,
number of deaths in wars or casualties in
terrorist attacks. Almost all man-made varia-

bles are wild. Furthermore, physical science
continues to discover more and more exam-
ples of wild uncertainty, such as the inten-
sity of earthquakes, hurricanes or tsunamis.
Economic life displays numerous examples

of wild uncertainty. For example, during the
1920s, the German currency moved from
three to a dollar to 4bn to the dollar in a few
years. And veteran currency traders still
remember when, as late as the 1990s, short-
term interest rates jumped by several thou-
sand per cent.
We live in a world of extreme concentration

where the winner takes all. Consider, for
example, how Google grabs much of internet
traffic, how Microsoft represents the bulk of
PC software sales, how 1 per cent of the US
population earns close to 90 times the bottom
20 per cent or how half the capitalisation of
the market (at least 10,000 listed companies)
is concentrated in less than 100 corporations.
Taken together, these facts should be

enough to demonstrate that it is the so-
called “outlier” and not the regular that we
need to model. For instance, a very small
number of days accounts for the bulk of the
stock market changes: just ten trading days
represent 63 per cent of the returns of the
past 50 years.
Let us now return to the Gaussian for a

closer look at its tails. The “sigma” is
defined as a “standard” deviation away from
the average, which could be around 0.7 to 1
per cent in a stock market or 8 to 10 cm for
height. The probabilities of exceeding multi-
ples of sigma are obtained by a complex
mathematical formula. Using this formula,
one finds the following values:

Probability of exceeding:
0 sigmas: 1 in 2 times
1 sigmas: 1 in 6.3 times
2 sigmas: 1 in 44 times
3 sigmas: 1 in 740 times
4 sigmas: 1 in 32,000 times
5 sigmas: 1 in 3,500,000 times
6 sigmas: 1 in 1,000,000,000 times
7 sigmas: 1 in 780,000,000,000 times
8 sigmas: 1 in 1,600,000,000,000,000 times
9 sigmas: 1 in 8,900,000,000,000,000,000
times
10 sigmas: 1 in 130,000,000,000,000,000,000,
000 times

and, skipping a bit:

20 sigmas: 1 in 36,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,
000 times

Soon, after about 22 sigmas, one hits a
“googol”, which is 1 with 100 zeroes behind it.
With measurements such as height and
weight, this probability seems reasonable, as
it would require a deviation from the average
of more than 2m. The same cannot be said

We live in a world of
extreme concentration
where the winner takes all.
Consider how Google grabs
much of internet traffic or
how Microsoft represents
the bulk of software sales
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variables such as financial markets. For
example, a level described as a 22 sigma has
been exceeded with the stock market crashes
of 1987 or the interest rate moves of 1992.
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The difference ten days make
By removing the ten biggest one-day moves from the S&P 500
over the past 50 years, we see a huge difference in returns. And
yet conventional finance treats these one-day jumps as mere
anomalies.
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of variables such as financial markets. For
example, a level desribed as a 22 sigma has
been exceeded with the stock market crashes
of 1987 and the interest rate moves of 1992.

The key here is to note how the frequen-
cies in the preceding list drop very rapidly,
in an accelerating way. The ratio is not
invariant with respect to scale.

Let us now look more closely at a fractal,
or scalable, distribution using the example of
wealth. We find that the odds of encountering
a millionaire in Europe are as follows:

Richer than 1 million: 1 in 62.5
Richer than 2 million: 1 in 250
Richer than 4 million: 1 in 1,000
Richer than 8 million: 1 in 4,000
Richer than 16 million: 1 in 16,000
Richer than 32 million: 1 in 64,000
Richer than 320 million: 1 in 6,400,000

This is simply a fractal law with a “tail
exponent”, or “alpha”, of two, which means
that when the number is doubled, the inci-
dence goes down by the square of that
number – in this case four. If you look at the
ratio of the moves, you will notice that this
ratio is invariant with respect to scale.

If the “alpha” were one, the incidence
would decline by half when the number is

doubled. This would produce a “flatter” dis-
tribution (fatter tails), whereby a greater
contribution to the total comes from the low
probability events.

Richer than 1 million: 1 in 62.5
Richer than 2 million: 1 in 125
Richer than 4 million: 1 in 250
Richer than 8 million: 1 in 500
Richer than 16 million: 1 in 1,000

We have used the example of wealth here,
but the same “fractal” scale can be used for
stock market returns and many other varia-
bles. Indeed, this fractal approach can prove to
be an extremely robust method to identify a
portfolio’s vulnerability to severe risks. Tradi-
tional “stress testing” is usually done by select-
ing an arbitrary number of “worst-case scenar-
ios” from past data. It assumes that whenever
one has seen in the past a large move of, say, 10
per cent, one can conclude that a fluctuation of
this magnitude would be the worst one can
expect for the future. This method forgets that
crashes happen without antecedents. Before
the crash of 1987, stress testing would not have
allowed for a 22 per cent move.

Using a fractal method, it is easy to extrapo-
late multiple projected scenarios. If your
worst-case scenario from the past data was,

say, a move of –5 per cent and, if you assume
that it happens once every two years, then,
with an “alpha” of two, you can consider that
a –10 per cent move happens every eight years
and add such a possibility to your simulation.
Using this model, a –15 per cent move would
happen every 16 years, and so forth. This will
give you a much clearer idea of your risks by
expressing them as a series of possibilities.

You can also change the alpha to generate
additional scenarios – lowering it means
increasing the probabilities of large devia-
tions and increasing it means reducing the
probabilities. What would such a method
reveal? It would certainly do what “sigma”
and its siblings cannot do, which is to show
how some portfolios are more robust than
others to an entire spectrum of extreme risks.
It can also show how some portfolios can
benefit inordinately from wild uncertainty.

Despite the shortcomings of the bell curve,
reliance on it is accelerating, and widening
the gap between reality and standard tools of
measurement. The consensus seems to be
that any number is better than no number –
even if it is wrong. Finance academia is too
entrenched in the paradigm to stop calling it
“an acceptable approximation”.

Any attempts to refine the tools of modern
portfolio theory by relaxing the bell curve

assumptions, or by “fudging” and adding the
occasional “jumps” will not be sufficient. We
live in a world primarily driven by random
jumps and tools designed for random walks
address the wrong problem. It would be like
tinkering with models of gases in an attempt
to characterise them as solids and call them
“a good approximation”.

While scalable laws do not yet yield precise
recipes, they have become an alternative way
to view the world, and a methodology where
large deviation and stressful events dominate
the analysis instead of the other way around.
We do not know of a more robust manner for
decision-making in an uncertain world.

Benoit Mandelbrot is Sterling professor emeritus of
mathematical sciences at Yale University. He is the
author of “Fractals and Scaling in Finance”
(Springer-Verlag, 1999) and, with Richard L Hudson, of
“The (Mis)Behaviour of Markets” (Profile, 2005).
benoit.mandelbrot@yale.edu
Nassim Nicholas Taleb is a veteran derivatives
trader and Dean’s professor in the sciences of
uncertainty at the University of Massachusetts,
Amherst. He is also the author of “Fooled by
Randomness” (Random House, 2005) and “The Black
Swan” (forthcoming).
www.fooledbyrandomness.com

Ni
ck

Lo
w

nd
es

The Gaussian and fractal models:
observations and consequences
1 By itself, no single number can characterise
uncertainty and risk but, as we have seen, we can
still have a handle on it so long as we can have a
table, a chart and an open mind.

2 In the Gaussian world, standard tables show that
67 per cent of the observations fall between -1 and
+1 sigma. Outside of this, sigma loses its significance.
With a scalable distribution, you may have 80 per
cent, 90 per cent, even 99.99 per cent of
observations falling between -1 and +1 sigmas. In
fractals, the standard deviation is never a “typical”
value and may even be infinite!

3 When assessing the effectiveness of a given
financial, economic or social strategy, the
observation window needs to be large enough to
include substantial deviations, so one must base
strategies on a long time frame.

4 You are far less diversified than you assume.
Because the market returns in the very long run will
be dominated by a small number of investments, you
need to mitigate the risk of missing these by
investing as broadly as possible. Very broad passive
indexing is far more effective than active selection.

5 Projections of deficits, performance and interest
rates are marred with extraordinarily large errors. In
many budget calculations, US interest rates were
projected to be 5 per cent for 2001 (not 1 per cent);
oil prices were projected to be close to $22 a barrel
for 2006 (not $62). Like prices, forecast errors follow
a fractal distribution.

6 Option pricing models, such as
Black-Scholes-Merton, are strongly grounded in the
bell curve in their representation of risk. The
Black-Scholes-Merton equation bases itself on the
possibility of eliminating an option’s risk through
continuous dynamic hedging, a procedure
incompatible with fractal discontinuities.

7 Some classes of investments with explosive upside,
such as venture capital, need to be favoured over
those that do not have such potential. Technology
investments get bad press; priced appropriately (in
the initial stages) they can deliver huge potential
profits, thanks to the small, but significant, possibility
of a massive windfall.

8 Large moves beget large moves; markets keep in
memory the volatility of past deviations. A subtle
concept, fractal memory provides an intrinsic way of
modelling both the clustering of large events and
the phenomenon of regime switching, which refers
to phases when markets move from low to high
volatility.


