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Abstract—The superwealthy do not necessarily have their interests
aligned with the rest of the economy, as they depend more on inequality
than wealth. The further away "in the tail" the more severe the effect. We
show how this effect holds across the various families of wealth distribu-
tions used by economists. We discuss the mathematical property, that is,
the sensitivity of partial tail expectation to dispersion parameters (which
includes the Gini coefficient) increases as one goes in the tail, while
the effect of the changes in the mean decreases. We show empirical
illustrations.

1 INTRODUCTION

It is often said that, in very unequal societies, the rich
compose a group apart. Not only are their social mores
and consumption patterns different, but their fortunes
seem dissociated with those of the rest of the population.
More recently, there has been an argument that the rich
(the top 1%) from different nations form a group apart,
a global "superclass" (Freeland, 2012 [1]). The difference
is even more acute in the .1%, which represents a large
class of close to 700,000 persons. For someone in the busi-
ness of selling luxury apartments or expensive watches,
changes in GDP are far less relevant than changes in Gini
or other indices of inequality. This is reflected in the dy-
namics of real estate prices: many major cities exhibited
a rise in the average price of apartments between 2008
and 2015, coupled with a stagnation or even decline in
the median value over the same period.

The objective of this note is to consider whether there
is theoretical and empirical substance to the claim that
in high inequality societies income of the super-rich is
in some sense decoupled from the income of the rest of
society. We do not mean it in an obvious sense that the
rich simply have higher income than the others. What
we mean is to look at the income gains that the rich
can make from an overall increase in national income
(while keeping the distribution unchanged) versus the
gains that they can make from a further widening of
income distribution (while keeping mean income the
same). We shall show that this particular trade-off varies

in function of income class, and that especially for the
top income classes, the gains from greater inequality
tend to be disproportionately high compared to the gains
from an increased overall income without a change in
the distribution.

1.1 Summary of the Paper

In Section 2, we show a general mathematical deriva-
tion of this relation, followed by applications to what
distributions are used for wealth and income inequality.
In Section 3, we present an empirical analysis, based on
household survey data from more than 100 countries.
Short conclusions close the paper.

2 MATHEMATICAL PROPERTIES

2.1 General framework for probability distributions

There is a necessarily mathematical relation, well known
by risk takers in mathematical finance (derivatives),
namely that remote parts of the distribution –the tails–
are less sensitive to changes in the mean, and more
sensitive to other parameters controlling the dispersion1.
The dispersion parameters can be the scale (which in
the special case of class of finite-variance distributions
would be the variance) or the tail exponent –or both.
It means that as one’s income increases, changes in the
mean income (i.e., from GDP increase) would be less
relevant than changes in inequality. This mathematical
property can be made clear in the following exposition.

We are interested in the expected income (or wealth)
for the segment above a certain level K, µK =∫∞
K
xdF (x), x ∈ (l,∞) where l ≥ 0. The measure under

consideration should be as general as possible to cover
the various approaches to wealth distributon as well as
the following transformation groups.

1. Called in Taleb(2015) [2] the "delta-vega" transfer as remote out
of the money options are more reactive to changes in volatility than
to those in the underlying security.
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Consider a family of continuous one-dimensional uni-
modal probability distribution with density function
φ ∈ C2 : [0 ∧ l + δ,∞) → [0, 1], with s ∈ R+, where λ(.)

is a slowly moving function with respect to x defined as
∀x > 0, limt→∞

λ(tx)
λ(x) = 1:

φ(x) :=
1

s
λ(x, α+ γ) z

(
x− δ
s

, α+ γ

)
. (1)

The general form φ allows us to consider most (if not
all) forms of one-tailed continuous unimodal distribu-
tions used for wealth and income, and location, scale,
and shape transformation groups, with two distinct
classes.

We define two broad classes of unimodal one-tailed
distributions:

1) The function z depends on x not α (Class 1), al-
lowing the location and scale transformation group
(with adjustment in the left tail of the support).

2) The function z depends on x and α (Class 2) and
λ(.) ceases to be a function of x for large values of
x , thus allowing both location-scale transformation
groups and shape transformation groups.

We can show that there exists a value x > xθ defined
as the "tail" in Taleb (2015) [2] above which "large values"
of x have the following properties.

i) For K > xθ, the probability density φ depends more
on the "scale" s (controlling dispersion) than the
"shift" δ (controlling the mean).

ii) The effect monotonically increases at higher values
of K; in other words for all ∃xθ′ > xθ : ∀K >

x′θ,
∂2φ(x)
∂s2

/
∂2φ(x)
∂δ2

∣∣∣∣
s=1,δ=0

≥ 0.

Further, when λ has a nonzero derivative with re-
spect to the tail exponent α,

iii) ∃xθ′′ : ∀K > xθ′′ ,
∂φ(x)
∂α

/
∂φ(x)
∂δ

∣∣∣∣
δ=0,x=K

≥ 1, and

iv) ∃xθ′′′ : ∀K > xθ′′′ ,
∂2φ(x)
∂α2

/
∂2φ(x)
∂δ2

∣∣∣∣
δ=0,x=K

≥ 0.

This property of densities transfers to any integral
transform of x ∈ (K,∞) such as partial expectations
µK =

∫∞
K
x dF (x) or the integral tranform of any non-

decreasing function f(x), namely
∫∞
K
f(x) dF (x), which

should also show the same relative dependence on scale
vs shift. Under consideration for us is the share of the
top

∫∞
K
x dF (x)∫∞

l
dF (x)

.

2.2 Quantiles for inequality measures

We retain the same symbol K for the threshold in
the following exposition. Consider a one-tailed random
variable X ∈ [xmin,∞). Let us define the quantile share

κq := q
E[X|X > K(q)]

E[X]
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Fig. 1. Lognormal case, ratio of derivatives of
mean/inequality in the top 10%, from Eq 6.
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Fig. 2. Lognormal case; sensitivity to inequality in the
class ranging from the "very rich" (1%) to the "super-rich"
classes (top .1%). We show the relative effect on income
from .1 changes in Gini

where K(q) = inf{h ∈ [xmin,+∞) ,P(X > h) ≤ q} is the
exceedance threshold for the probability q.

For a given sample (Xk)1≤k≤n, the "empirical" or
natural estimator (or observed quantile share) κ̂q :=
qthpercentile

total , can be expressed, as

κ̂q :=

∑n
i=1 1Xi>K̂(q)Xi∑n

i=1Xi

where K̂(q) is the estimated exceedance threshold for
the probability q :

K̂(q) := inf{K :
1

n

n∑
i=1

1x>K ≤ q}

2.3 Class 1: Lognormal-Gibrat Case

Class 1 Distributions
The class includes exponential, folded normal, and the
more commonly used Lognormal-Gibrat distribution.
Further, the Lognormal belongs to the class of subex-
ponential distributions, which is the fattest tail class
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TABLE 1
Lognormal Case: The contribution/share in income for class 1

mµK(gl, µ) scaled by the mean. (Should be interpreted
as all the subparts are linear to changes in mean.)

GINI Top 100% Bottom 10% Bottom 50% Top 50% 10% 1% .1% .01% .001% .0001%

0.1 1. 0.072 0.429 0.571 0.135 0.016 0.002 0. 0. 0.

0.2 1. 0.051 0.36 0.64 0.178 0.025 0.003 0. 0. 0.

0.3 1. 0.034 0.293 0.707 0.231 0.037 0.005 0.001 0. 0.

0.4 1. 0.022 0.229 0.771 0.295 0.057 0.009 0.001 0. 0.

0.5 1. 0.013 0.17 0.83 0.372 0.085 0.016 0.003 0. 0.

0.6 1. 0.007 0.117 0.883 0.464 0.128 0.029 0.006 0.001 0.

0.7 1. 0.003 0.071 0.929 0.573 0.195 0.052 0.012 0.003 0.001

0.8 1. 0.001 0.035 0.965 0.702 0.304 0.101 0.028 0.007 0.002

0.9 1. 0. 0.01 0.99 0.852 0.5 0.222 0.082 0.026 0.008

TABLE 2
Lognormal Case: "Tradeoff", that is relative change in income from .01 changes in Gini: µK(q(g

l+0.01)−µK(q(g
l)

µK(q(gl)

GINI Top 100% Bottom 10% Bottom 50% Top 50% 10% 1% .1% .01% .001% .0001%

0.1 0. −0.034 −0.016 0.012 0.029 0.046 0.059 0.07 0.08 0.089

0.2 0. −0.037 −0.019 0.011 0.027 0.044 0.057 0.068 0.079 0.088

0.3 0. −0.042 −0.022 0.009 0.025 0.042 0.056 0.068 0.079 0.088

0.4 0. −0.048 −0.027 0.008 0.024 0.042 0.056 0.069 0.08 0.09

0.5 0. −0.056 −0.033 0.007 0.023 0.042 0.057 0.071 0.083 0.094

0.6 0. −0.069 −0.042 0.006 0.022 0.042 0.06 0.075 0.089 0.102

0.7 0. −0.09 −0.057 0.004 0.021 0.044 0.064 0.083 0.099 0.115

0.8 0. −0.13 −0.087 0.003 0.02 0.048 0.074 0.098 0.12 0.141

0.9 0. −0.243 −0.175 0.002 0.019 0.057 0.098 0.139 0.178 0.215

below the power laws. Indeed the lognormal has tails
thick enough as to be confused for a power law outside
extremely large deviations.

Consider a standard lognormal; we parametrize φ

with (log(m) − 1
2σ

2, σ) to get a mean of m (indepen-

dent from σ)2 and variance of m
√(

eσ2 − 1
)
, z(x) :=

e

(
− log(m)+σ

2

2
+log(x)

)2
2σ2 , λ = 1√

2πσ
. The behavior of the kth

moment is examined with k = m− 1. The first condition
for the dispersion to matter more than the mean:

K ≥ me
σ2

2

and for second derivatives:

K ≥ meσ
2+ 1

2

√
σ2+4σ

Let g be the scaled (i.e., mean adjusted) standard Gini
coefficient, gl ∈ (0, 1); from the conventional formu-
lations for a scaled Gini. Where F is the cumulative

2. The conventional parametrization of the lognormal (µ, σ) has the
problem that its mean depends on the variance, with expectation µ−
1
2
σ2. We therefore separate the mean.

density of the distribution under concern:

g =
1

m

∫
Φ(y)(1− Φ(y))dy. (2)

which, for a Lognormal distribution can be computed
as (the literature, say Theil [3], Cowell [4], etc.) provides
results though we could not find derivations, which we
redid in Appendix A):

gl = 2Ψ
(σ

2

)
− 1 (3)

where Ψ(.) is the cumulative standard Gaussian. Invert-
ing to express σ in terms of Gini:

σ = 2 erf−1(gl)

where erf(.) is the error function erf(z) = 2√
π

∫ z
0
e−t

2

dt.
We remark that the Gini coefficient does not directly
include the mean.

Recall the partial mean above K, µK(gl,m) =
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TABLE 3
Power Law Case: The contribution/share in income for class 1

µµK(gp, µ) scaled by the mean. (Should be interpreted
as all the subparts are linear to changes in mean.)

GINI Top 100% Bottom 10% Bottom 50% Top 50% 10% 1% .1% .01% .001% .0001%

0.1 1. 0.083 0.433 0.567 0.152 0.023 0.004 0.001 0. 0.

0.2 1. 0.068 0.37 0.63 0.215 0.046 0.01 0.002 0. 0.

0.3 1. 0.055 0.311 0.689 0.289 0.084 0.024 0.007 0.002 0.001

0.4 1. 0.044 0.257 0.743 0.373 0.139 0.052 0.019 0.007 0.003

0.5 1. 0.035 0.206 0.794 0.464 0.215 0.1 0.046 0.022 0.01

0.6 1. 0.026 0.159 0.841 0.562 0.316 0.178 0.1 0.056 0.032

0.7 1. 0.018 0.115 0.885 0.666 0.444 0.296 0.197 0.131 0.087

0.8 1. 0.012 0.074 0.926 0.774 0.599 0.464 0.359 0.278 0.215

0.9 1. 0.006 0.036 0.964 0.886 0.785 0.695 0.616 0.546 0.483

TABLE 4
Power Law Case: Tradeoff for 1 point of Gini.

Gini Top 100% Bottom 10% Bottom 50% 50% 10% 1% .1% .01% .001% .0001%

0.1 0. −0.019 −0.015 0.011 0.038 0.078 0.12 0.163 0.208 0.254

0.2 0. −0.02 −0.016 0.01 0.032 0.065 0.1 0.135 0.172 0.21

0.3 0. −0.021 −0.018 0.008 0.027 0.056 0.085 0.114 0.145 0.176

0.4 0. −0.023 −0.02 0.007 0.024 0.048 0.072 0.098 0.124 0.15

0.5 0. −0.026 −0.024 0.006 0.021 0.042 0.063 0.085 0.107 0.13

0.6 0. −0.031 −0.029 0.005 0.018 0.036 0.055 0.074 0.094 0.113

0.7 0. −0.039 −0.037 0.005 0.016 0.032 0.049 0.065 0.082 0.1

0.8 0. −0.055 −0.053 0.004 0.014 0.029 0.043 0.058 0.073 0.089

0.9 0. −0.104 −0.103 0.004 0.013 0.026 0.039 0.052 0.066 0.079

∫∞
K
xf(x, gl) dx. Hence

µK(gl,m) =

1

2
m

(
erf

(
2erf−1(g)2 − log(K) + log(m)

2
√

2erf−1(g)

)
+ 1

)
(4)

We thus are now able to express the total income (or
wealth) to those with income (or wealth) in excess K in
terms of g a measure of inequality.

Now expressing K in terms of quantiles, q : K = K(q):

µK(q)(g
l,m) =

1

2
m
(

erf
(√

2erf−1(gl)− erfc−1(2q)
)

+ 1
)

(5)
We notice in Eq. 5 that expressing K as a function of q
removes m from the equation except as a scaling factor.
Let us consider ratio of first derivatives, that is, the ratio
of sensitivity of the expectation per quantile to the Gini
gl over that of the mean m:

∂µK(gl,m)
∂gl

∂µK(gl,m)
∂m

=

√
2m exp

(
erf−1(gl)2 −

(
erfc−1(2q)−

√
2erf−1(gl)

)2)
erf
(√

2erf−1(gl)− erfc−1(2q)
)

+ 1

(6)

Figure 1 shows the effect of the ratio of derivatives
from Eq. 6. Figure 2 shows the adjusted discretization of
Eq. 6, here the sensitivity for .1 changes in Gini, namely
µK(q)(g

l+0.1)−µK(q)(g
l)

µK(q)(gl)
.

2.4 Paretan tailed Class

The results of the next section apply to a broad class,
that is a standard Pareto distribution, its Lomax version
(shifted Pareto), Singh-Maddala, or Lévy-Stable, as well
as distributions of that class we have derived ourselves,
such as Folded Student-T or folded Lévy-Stable distri-
butions. Owing to the properties of λ(.) in Eq. 1, we can
treat the distributions as being statistically "the same" for
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Fig. 3. Power law case; sensitivity to inequality in the
class ranging from the "very rich" (1%) to the "super-rich"
classes (top .1%). We show the relative effect on income
from .1 changes in Gini

large values of K, hence in the lower centiles. Figure 4
illustrates the point.
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x

0.00005
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Fig. 4. Comparing the PDF of an Alpha-Stable distribution
(α, β, µ, s) with exponent alpha = 5/4, symmetry param-
eter β = 1, mean µ = 4, and scale σ = 1.652 to a Pareto
distribution with tail α = 5/4 and minimum value 1. The
distributions are statistically indistinguishable at values
above the mean, hence our result does not depend on
the specifics of Class 2 distribution.

Consider φα(x) the density of a α-Pareto distribution
bounded from below by xmin > 0, in other words:
φα(x) = αxαminx

−α−1
1x≥xmin

, and P(X > x) =
(
xmin

x

)
α.

The mean µ = αxm
α−1 .

Rewriting Eq. 2 to get gl, the Gini coefficient for a
power law:

gp =
1

2α− 1
(7)

Expressing K in terms of quantiles, q : K = K(q), and
getting K = xmq

−1/α, we have the partial mean

µK(gp, µ) = µ
(
q

2gp

gp+1

) 1
2 ( 1

gp−1)
(8)

and finally,

∂µK(gp,m)

∂gp

/
∂µK(gp, µ)

∂µ
= − 2µ log(q)

(gp + 1)2
(9)

the discretization of which can seen in Figure 3.

TABLE 5
Share of total income received by each ventile of national

income distribution

Ventile Mean
ventile
share in
total income
(in %)

STD of ven-
tile share (in
%)

Income gain
from 1 STD
increased
share (in
% of own
income)

1st 1.06 0.45 42.2
2nd 1.59 0.53 33.3
3rd 1.9 0.56 29.6
4th 2.17 0.56 26.4
5th 2.42 0.58 23.9
6th 2.67 0.58 21.6
7th 2.9 0.57 19.8
8th 3.15 0.56 17.8
9th 3.4 0.55 16.1
10th 3.68 0.53 14.5
11th 3.98 0.5 12.6
12th 4.3 0.47 11
13th 4.67 0.43 9.1
14th 5.09 0.38 7.4
15th 5.6 0.32 5.8
16th 6.22 0.28 4.5
17th 7.04 0.32 4.5
18th 8.22 0.58 7.1
19th 8 0.93 11.6
20th
(top)

19.51 5.65 29

Total 100

3 EMPIRICAL ILLUSTRATION

Income distributions in the nations of the world differ
a lot. Table 1 shows, using the data from 116 coun-
tries around the year 2008, the average ventile shares
and their standard deviations. All ventile shares are
calculated from micro data provided by nationally-
representative household surveys.3 Consider the first
ventile (the poorest 5 percent of population ranked by
income per capita). On average, across countries, the
poorest ventile receives just slightly above 1% of total
national income. In more equal counties, the share of
the bottom is greater (almost 2%), in less equal, it is
less (under 1

2 of 1%). The standard deviation of the

3. The data are available at Harvard database the information of
which is available in Milanovic (2015) [5].
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Figure 1. Distribution-neutral growth rate needed to make people from a given income fractile 
indifferent between growth and favorable distributional change (= mean +1 standard deviation) 

 

Explanation: Numbers 1-19 on the horizontal axis refer to the first 19 ventiles, distribution from the 1st 
percentile to the 95th percentile (inclusive). Numbers 96-99 refer to the 96th etc. percentile. The last bar 
refers to the top 1%. 

Source:  Household surveys from 116 countries around year 2008. Unweighted data. World Income 
Distribution (WYD) database.  
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Fig. 5. caption

bottom ventile share is 0.45 percent (column 2). Thus
the gain that an average person placed in the bottom
ventile would make from moving from a distribution
that "allocated" to him the average worldwide share
of the bottom ventile to a distribution that would be
more favorable to the bottom ventile (by one standard
deviation), would be 42 percent (0.45/1.064). We call
such a move to "the mean share + 1 standard devia-
tion" a "conceivable" distributional change because the
change represents something that is not far-fetched but
observable in the empirical reality of national income
distributions. The same interpretation of Table 1 applies
to all other ventiles.

It can be readily seen that the sensitivity, expressed in
terms of own income, is very high for the bottom and top
ventiles. For the bottom three ventiles and for the highest
ventile it amounts to about 30% of their income. The gain
is much more modest for the middle ventiles while for
the ventiles 13-18, it stays under 10%. The result is driven
by the well-known observation (see Palma 2011 [6], also
Milanovic 2008 [7], p. 29)) that middle fractiles tend to
get the same share of national income, whether they are

in unequal or equal countries. Consequently, if a person
belongs to these middle fractiles, his income will not
depend on whether his country is equal or unequal, but
almost fully on whether the country is rich or poor. In
other words, for such a person a way toward higher own
income passes through an increase in country’s mean
income (that is, depends on country’s growth rate).

The situation, however, is different for the people
placed in the bottom or top of income distribution. The
former obviously benefit from more equal and the latter
from more unequal distributions. We have seen that for
the poorest ventile, moving from a distribution or a
country with an "average" distribution (that is, with a
share of the poor equal to world average) to a more
equal distribution (by 1 standard deviation) results in
a substantial real income gain (42 percent). Similarly,
for the rich, moving from an "average" distribution to a
more unequal distribution produces large income gains:
for the top ventile, the gain is 30 percent, but when
we disaggregate the top ventile into five top percentiles
(labeled 96 to top 1% in Figure 1), we can see that the
gains steadily rise: for the 96th percentile, the overall
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Figure 3. Distribution-neutral growth rate needed to make people from a given income fractile 
indifferent between growth and favorable distributional change (= 90th  percentile) 
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Fig. 6. caption

income gain from a favorable distributional change is
17 percent; for the top 1%, the income gain is almost
45 percent. Thus, for the top 1% to forgo the favorable
("conceivable") distributional change would require a
distribution-neutral income growth of almost 45%. The
fortunes of both the very poor and the very rich will
depend much less on what happens to the mean income
and much more on what happens to their country’s
distribution.

There is a further issue. We have so far defined a
"conceivable" distributional change to involve the gain
of 1 standard deviation compared to what is the world
average. However, the distribution of income shares is
not normal. Poor ventiles have income shares that are
skewed to the left with a long left tail. This implies
that there are quite a few counties with extremely low
income shares for the poor ventiles (see Figure 2; left
upper panel). Exactly the opposite is the case for the
top ventiles. The distribution of income shares of the
twentieth ventile is strongly skewed to the right: there
are many countries where the richest 5% of population
have income shares significantly above the worldwide

mean income share of the top ventile. As Figure 2 (right
bottom panel) shows, there are countries where the top
income share attains 40%, which is twice as much as the
worldwide mean share of the top ventile or almost 4
standard deviations above the mean.

Thus, the assumption on which we based our trade-off
between income and inequality, namely the advantage
of a "conceivable" distributional change of 1 standard
deviation, means for the poor ventiles that they move
almost to the extreme of what exists in the world, while
for the rich ventiles it leaves them with still (empirically)
significant possibility to increase own share. Vertical
lines in Figure 2 are, for each ventile, drawn at the
position equal to the mean (solid line) and "mean + 1
standard deviation" (broken line). For the ventiles 5, 10
and 15, the assumption of "conceivable" distributional
change brings them to about the 90th percentile of what
is observable in real world. But for the top ventile or top
percentile (not shown here), the assumption of "mean +
1 standard deviation" brings it only to about the 75th-
80th percentile of what is observable in the world. By
pushing for a further increase in inequality, the rich are
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not pushing against the wall: they can be seen as simply
pushing to have a distribution that already exists in other
(more unequal) countries.

This then means that if we consider another trade-off
such that the favorable distributional change for each
ventile means that it reaches an income share equal
to the 90th percentile of what is observable, the gains
for the rich take an even more extreme form. This is
shown in Figure 3. Now the top 1% will require an
overall distribution-neutral income growth of 61 percent
in order to forgo the possibility of a favorable distri-
butional change. To give an idea of how important is
this distributional change: it is equal to the movement
from Turkey (where the top 1% receives 7.1 percent of
national income) to Mexico (where the top 1% receives
11.4 percent). For other rich ventiles, the distribution-
neutral growth needed to forgo the favorable distribu-
tional change will also be high, ranging between 23 and
39 percent. But for the middle classes, the equivalent
distribution-neutral growth will be around 10 percent.

Finally, it is well known that household surveys tend
to underestimate incomes of the top 1%. This is due
to rich people’s underestimation of capital incomes,
non-participation in surveys (see Korinek Mistiaen and
Ravallion 2006 [8]), but also to top coding of incomes
done by statistical offices. Top coding is a practice intro-
duced by US Census Bureau to set ceilings to various
types of incomes, and thus to total income, in order to
avoid sudden fluctuations in income shares and mea-
sures of inequality as well to preserve confidentiality of
information. In Figure 4, we compare micro data from
US and Germany; the former applies an aggressive top-
coding, the latter does not. It is notable that the very top
of US income distribution, around the top 0.1%, drops
precipitously, not displaying the long right-end tail that
we normally associate with income distributions. Such a
long tail however is present in the case of German data.
The Pareto line fitted on the top 5% makes us expect to
see a much fatter income tail in the US than what we
actually see in the data. The contrast is even more strik-
ing because US income distribution is significantly more
unequal than German: there are many more extremely
rich people in the US than in Germany. For example,
Forbes 2013 wealth list gives 442 US billionaires and
only 58 from Germany; billionaires’ wealth/GDP ratios
are respectively 12.4 and 8.3 percent. Clearly, something
is wrong: either there is a much greater underreporting
among the wealthy in the United States, or (more likely)
the sharp fall-off is due to the Census Bureau’s top-
coding.

But whatever is the case, it means that the "true"
income shares of the top 1% are higher than recorded,

the right-skewness of the top 1% share worldwide prob-
ably greater, and thus the equivalent distribution-neutral
income growth even higher. It would not be surprising
then to posit that empirically the top 1%, interested in
maximizing own income, would, in a country where its
share is at the world average, have a following choice:
(1) use political power to further increase its share to the
level of (say) Mexico, or (2) hope or wait until economy’s
GDP per capita almost doubles in real terms (with no
distributional change).
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APPENDIX A: DERIVING THE GINI FOR A LOG-
NORMAL DISTRIBUTION

As we mentioned earlier we could find no derivation
of the Gini for a lognormal, only the result, with some
amount of circularity in the citations. So we derived the
result in Equation 3, namely that

gl = 2Ψ
(σ

2

)
− 1

for safety.

Proof. Where gl is the Gini coefficient and X and X ′ are
independent (etc., etc.) with mean µ:

gl =
1

2

E (|X −X ′|)
µ

. (10)

In other words the Gini is the mean expected deviation
between any two random variables scaled by the mean.
If we know the distribution, then Equation 10 is rather
simple. In the event of known cumulative distribution
function Φ, consider that |X−X ′|= X+X ′−2min(X,X ′).
Hence the expectation becomes:

E (|X −X ′|) = 2
(
µ− E(X,X ′)−

)
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We have the joint cumulative

F
(
(x, x′)−

)
= 1− P(X > x)P(X ′ > x)

hence:
gl = 1− 1

µ

∫ ∞
0

(1− Φ(x))
2

dx (11)

Let X follow a lognormal distribution
Ln
(

log(µ)− σ2

2 , σ
)

with PDF

φ(x) =
1√

2πσx
e−

(
− log(µ)+σ

2

2
+log(x)

)2
2σ2 ,

CDF

Φ(x) =
1

2
erfc

(
log(µ)− σ2

2 − log(x)
√

2σ

)
,

where erfc is the complementary error function, and
mean E(X) = µ.

Equation 11 can be derived by parts:

gl =

[
x(Φ(x)− 1)Φ(x)

]∞
0

− 1

µ

∫ ∞
0

x(1− 2Φ(x))Φ′(x) dx

(12)
hence:

G =
1√

2πµσ∫ ∞
0

e−

(
− log(µ)+σ

2

2
+log(x)

)2
2σ2 erf

(
log(µ)− σ2

2 − log(x)
√

2σ

)
dx.

(13)

Substituting u =
log(µ)−σ22 −log(x)√

2σ
and changing the band

of integration:

gl =

∫ ∞
−∞

erf(u)e−
σ2

2 −u
2−
√
2σu

√
π

du

Integrating by parts:

gl =
1√
π

∫ ∞
−∞

e−u
2

erf
(
σ√
2

+ u

)
du.

Since

∂gl

∂σ
=

∂

∂σ

∫ ∞
−∞

e−u
2

erf
(
σ√
2

+ z
)

√
π

dz

 =
e−

σ2

4

√
π
,

we finally get

gl =

∫ σ

0

e−
t2

4

√
π

dt = erf
(σ

2

)
. (14)

We note that erf
(
σ
2

)
= 2Ψ

(
σ
2

)
− 1.

——


